skip to main content


Search for: All records

Creators/Authors contains: "Shi, Weishi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present a maximum-margin sparse Gaussian Process (MM-SGP) for active learning (AL) of classification models for multi-class problems. The proposed model makes novel extensions to a GP by integrating maximum-margin constraints into its learning process, aiming to further improve its predictive power while keeping its inherent capability for uncertainty quantification. The MM constraints ensure small "effective size" of the model, which allows MM-SGP to provide good predictive performance by using limited" active" data samples, a critical property for AL. Furthermore, as a Gaussian process model, MM-SGP will output both the predicted class distribution and the predictive variance, both of which are essential for defining a sampling function effective to improve the decision boundaries of a large number of classes simultaneously. Finally, the sparse nature of MM-SGP ensures that it can be efficiently trained by solving a low-rank convex dual problem. Experiment results on both synthetic and real-world datasets show the effectiveness and efficiency of the proposed AL model. 
    more » « less
  2. null (Ed.)
    We present a novel multi-source uncertainty prediction approach that enables deep learning (DL) models to be actively trained with much less labeled data. By leveraging the second-order uncertainty representation provided by subjective logic (SL), we conduct evidence-based theoretical analysis and formally decompose the predicted entropy over multiple classes into two distinct sources of uncertainty: vacuity and dissonance, caused by lack of evidence and conflict of strong evidence, respectively. The evidence based entropy decomposition provides deeper insights on the nature of uncertainty, which can help effectively explore a large and high-dimensional unlabeled data space. We develop a novel loss function that augments DL based evidence prediction with uncertainty anchor sample identification. The accurately estimated multiple sources of uncertainty are systematically integrated and dynamically balanced using a data sampling function for label-efficient active deep learning (ADL). Experiments conducted over both synthetic and real data and comparison with competitive AL methods demonstrate the effectiveness of the proposed ADL model. 
    more » « less
  3. Studies indicate that much of the software created today is not accessible to all users, indicating that developers don’t see the need to devote sufficient resources to creating accessible software. Compounding this problem, there is a lack of robust, easily adoptable educational accessibility material available to instructors for inclusion in their curricula. To address these issues, we have created five Accessibility Learning Labs (ALL) using an experiential learning structure. The labs are designed to educate and create awareness of accessibility needs in computing. The labs enable easy classroom integration by providing instructors with complete educational materials including lecture slides, activities, and quizzes. The labs are hosted on our servers and require only a browser to be utilized. To demonstrate the benefit of our material and the potential benefits of our experiential lab format with empathy-creating material, we conducted a study involving 276 students in ten sections of an introductory computing course. Our findings include: (I) The demonstrated potential of the proposed experiential learning format and labs are effective in motivating and educating students about the importance of accessibility (II) The labs are effective in informing students about foundational accessibility topics (III) Empathy-creating material is demonstrated to be a beneficial component in computing accessibility education, supporting students in placing a higher value on the importance of creating accessible software. Created labs and project materials are publicly available on the project website: http://all.rit.edu 
    more » « less
  4. Many developers don’t understand how to, or recognize the need to develop accessible software. To address this, we have created five educational Accessibility Learning Labs (ALL) using an experiential learning structure. Each of these labs addresses a foundational concept in computing accessibility and both inform participants about foundational concepts in creating accessible software while also demonstrating the necessity of creating accessible software. The hosted labs provide a complete educational experience, containing materials such as lecture slides, activities, and quizzes. We evaluated the labs in ten sections of a CS2 course at our university, with 276 students participating. Our primary findings include: I) The labs are an effective way to inform participants about foundational topics in creating accessible software II) The labs demonstrate the potential benefits of our proposed experiential learning format in motivating participants about the importance of creating accessible software III) The labs demonstrate that empathy material increases learning retention. Created labs and project materials are publicly available on the project website: http://all.rit.edu 
    more » « less